3.1287 \(\int \frac{1}{(a+b \tan (e+f x))^{3/2} \sqrt{c+d \tan (e+f x)}} \, dx\)

Optimal. Leaf size=218 \[ -\frac{2 b^2 \sqrt{c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) \sqrt{a+b \tan (e+f x)}}-\frac{i \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{f (a-i b)^{3/2} \sqrt{c-i d}}+\frac{i \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{f (a+i b)^{3/2} \sqrt{c+i d}} \]

[Out]

((-I)*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Tan[e + f*x]])])/((a - I*b)^(
3/2)*Sqrt[c - I*d]*f) + (I*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e +
f*x]])])/((a + I*b)^(3/2)*Sqrt[c + I*d]*f) - (2*b^2*Sqrt[c + d*Tan[e + f*x]])/((a^2 + b^2)*(b*c - a*d)*f*Sqrt[
a + b*Tan[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.739284, antiderivative size = 218, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {3569, 3616, 3615, 93, 208} \[ -\frac{2 b^2 \sqrt{c+d \tan (e+f x)}}{f \left (a^2+b^2\right ) (b c-a d) \sqrt{a+b \tan (e+f x)}}-\frac{i \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{f (a-i b)^{3/2} \sqrt{c-i d}}+\frac{i \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{f (a+i b)^{3/2} \sqrt{c+i d}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*Tan[e + f*x])^(3/2)*Sqrt[c + d*Tan[e + f*x]]),x]

[Out]

((-I)*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Tan[e + f*x]])])/((a - I*b)^(
3/2)*Sqrt[c - I*d]*f) + (I*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e +
f*x]])])/((a + I*b)^(3/2)*Sqrt[c + I*d]*f) - (2*b^2*Sqrt[c + d*Tan[e + f*x]])/((a^2 + b^2)*(b*c - a*d)*f*Sqrt[
a + b*Tan[e + f*x]])

Rule 3569

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d)), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3616

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3615

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[((a + b*x)^m*(c + d*x)^n)/(A - B*x), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(a+b \tan (e+f x))^{3/2} \sqrt{c+d \tan (e+f x)}} \, dx &=-\frac{2 b^2 \sqrt{c+d \tan (e+f x)}}{\left (a^2+b^2\right ) (b c-a d) f \sqrt{a+b \tan (e+f x)}}-\frac{2 \int \frac{-\frac{1}{2} a (b c-a d)+\frac{1}{2} b (b c-a d) \tan (e+f x)}{\sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}} \, dx}{\left (a^2+b^2\right ) (b c-a d)}\\ &=-\frac{2 b^2 \sqrt{c+d \tan (e+f x)}}{\left (a^2+b^2\right ) (b c-a d) f \sqrt{a+b \tan (e+f x)}}+\frac{\int \frac{1+i \tan (e+f x)}{\sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}} \, dx}{2 (a-i b)}+\frac{\int \frac{1-i \tan (e+f x)}{\sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}} \, dx}{2 (a+i b)}\\ &=-\frac{2 b^2 \sqrt{c+d \tan (e+f x)}}{\left (a^2+b^2\right ) (b c-a d) f \sqrt{a+b \tan (e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{(1-i x) \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{2 (a-i b) f}+\frac{\operatorname{Subst}\left (\int \frac{1}{(1+i x) \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{2 (a+i b) f}\\ &=-\frac{2 b^2 \sqrt{c+d \tan (e+f x)}}{\left (a^2+b^2\right ) (b c-a d) f \sqrt{a+b \tan (e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{i a+b-(i c+d) x^2} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{(a-i b) f}+\frac{\operatorname{Subst}\left (\int \frac{1}{-i a+b-(-i c+d) x^2} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{(a+i b) f}\\ &=-\frac{i \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{(a-i b)^{3/2} \sqrt{c-i d} f}+\frac{i \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{(a+i b)^{3/2} \sqrt{c+i d} f}-\frac{2 b^2 \sqrt{c+d \tan (e+f x)}}{\left (a^2+b^2\right ) (b c-a d) f \sqrt{a+b \tan (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 1.34215, size = 232, normalized size = 1.06 \[ \frac{\frac{2 b^2 \sqrt{c+d \tan (e+f x)}}{(a d-b c) \sqrt{a+b \tan (e+f x)}}+\frac{(b+i a) \tan ^{-1}\left (\frac{\sqrt{-c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{a+i b} \sqrt{-c-i d}}+\frac{i (a+i b) \tan ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{-a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{-a+i b} \sqrt{c-i d}}}{f \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*Tan[e + f*x])^(3/2)*Sqrt[c + d*Tan[e + f*x]]),x]

[Out]

(((I*a + b)*ArcTan[(Sqrt[-c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[
a + I*b]*Sqrt[-c - I*d]) + (I*(a + I*b)*ArcTan[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[-a + I*b]*Sqrt[c
 + d*Tan[e + f*x]])])/(Sqrt[-a + I*b]*Sqrt[c - I*d]) + (2*b^2*Sqrt[c + d*Tan[e + f*x]])/((-(b*c) + a*d)*Sqrt[a
 + b*Tan[e + f*x]]))/((a^2 + b^2)*f)

________________________________________________________________________________________

Maple [F]  time = 180., size = 0, normalized size = 0. \begin{align*} \int{{\frac{1}{\sqrt{c+d\tan \left ( fx+e \right ) }}} \left ( a+b\tan \left ( fx+e \right ) \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x)

[Out]

int(1/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \tan \left (f x + e\right ) + a\right )}^{\frac{3}{2}} \sqrt{d \tan \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*tan(f*x + e) + a)^(3/2)*sqrt(d*tan(f*x + e) + c)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \tan{\left (e + f x \right )}\right )^{\frac{3}{2}} \sqrt{c + d \tan{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*tan(f*x+e))**(1/2)/(a+b*tan(f*x+e))**(3/2),x)

[Out]

Integral(1/((a + b*tan(e + f*x))**(3/2)*sqrt(c + d*tan(e + f*x))), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError